Hyperion Research LogoHyperion Research Logo_StickyHyperion Research LogoHyperion Research Logo
  • Home
  • Services
    • Consulting Services
    • Artificial Intelligence-High Performance Data Analysis (AI-HPDA)
    • Traditional and Emerging HPC
    • Quantum Computing Continuing Information Service
    • HPC User Forum
    • Worldwide High Performance Technical Server QView
    • Worldwide HPC Server, Verticals and Countries Forecast Database
    • HPC End-User Multi-Client Study 2024
    • High-Performance Computing Pathfinders
    • Cloud Computing Program
  • Team
  • Sample Projects
    • List of Recent Reports
    • Top 10 Predictions for the Global HPC-AI Community for 2025
    • HPC User Forum: Dr. Ann Speed
    • QC Optimization Status and Prospects
    • To Out-compute is to Out-compete: Competitive Threats and Opportunities Relative to U.S. Government HPC Leadership
    • HPC-AI Success Story
    • HPC+AI Market Update SC24
    • Taxonomy
      • AI-HPDA Taxonomy
      • HPC Server Tracking and Application Workload Segments
      • Traditional HPC and AI-HPDA Subverticals
    • NERSC Update, May 2021 HPC User Forum
    • Cloud Computing Changing HPC Spending
    • NASA Bespoke HPC Study
    • ROI with HPC
    • Interview Series
    • Cloud Application Assessment Tool
    • MCS Server Highlights 2021
    • QC User Study 2021
    • HPC Storage Review 2021 First Half Yr
    • Hyperion Research Sponsored Tech Spotlight AMD-Supermicro
    • U.S. HPC Centers of Activity
  • Events
  • Contact
0

$0.00

LOGIN
✕
  • Home
  • HYP_Link
  • Deep Transfer Learning Framework Applied to Radiation Therapy
Awaiting product image

Deep Transfer Learning Framework Applied to Radiation Therapy

$1,500.00

Authors: Alex Norton, Tom Sorensen

Publication Date: 2 202022

Length: 1 pages

Category: HYP_Link
Share
Description

At the conclusion of 2021, researchers at UNC Charlotte and Duke University Medical Center published results of work done to use transfer learning methods to generate fluence maps for radiation therapy, aimed at providing medical professionals with more capability and information in fighting adrenal cancers. The technique uses a deep transfer learning model trained on a much larger dataset that can be applied to a smaller data set for a specific application.

  • The initial model was trained on pancreas treatment plans, then retuned and applied to a smaller set of data points on adrenal cancers. The output of the model generates a fluence map for specific IMRT beam-based treatments for adrenal cancers.
  • According to the researchers, this approach is meant to supplement but not replace human expertise in the field and is reliant on human expertise to finetune and improve the AI model.

Related Products

    Canada’s National QC Program Seeks Public Input on Strategy

    Bob Sorensen, Earl Joseph

    Building on its Budget 2021 commitment to launch a seven year $360 million National Quantum Strategy, the Government of Canada recently stood up a public survey website to gather insights on how to implement the plan. The survey covers a comprehensive set of issues including best practices on academic, government and private sector partnerships, talent and workforce challenges and opportunities, mechanisms to ensure equity, diversity, and inclusion, adoption of quantum technologies by Canadian entities, and identification of any significant gaps, barriers, or challenges that could hinder Canadian efforts to become a global leader in quantum technologies.

    8 202021 | HYP_Link

    AI Engineers in India Alleviate Effects of Water Scarcity

    Tom Sorensen, Alex Norton

    The August 2021 issue of the International Research Journal of Engineering and Technology (IRJET), a peer-reviewed research journal, included a paper based on the work of three researchers from India's St. Francis Institute of Technology (SFIT) summarizing their use of artificial intelligence (AI) and machine learning (ML) methods to help alleviate water shortages in India caused by population growth, urbanization, and climate change. Verlekar, Shah, and Kulkarni used a machine learning model to create a proactive scheme for managing local water resources, work that was prompted by a 2019 drought that impacted the Chennai area of India.

    October 202021 | HYP_Link

Have any questions?

365 Summit Ave.
St. Paul MN 55102, USA.

info@hyperionres.com

© 2021 Hyperion Research. All Rights Reserved | Privacy Policy | Website Terms of Use
LOGIN
0

$0.00

✕

Login

Lost your password?