HPC Market Update
During SC21
November 2021

www.HyperionResearch.com
www.hpcuserforum.com

Earl Joseph
The Hyperion Research Team

Analysts
- Earl Joseph, CEO
- Steve Conway, Senior Advisor
- Bob Sorensen, SVP Research
- Mark Nossokoff, Senior Analyst
- Alex Norton, Principal Analyst & Data Manager
- Melissa Riddle, Associate Analyst
- Thomas Sorensen, Research Associate

Operations
- Jean Sorensen, COO

Global Accounts
- Rene Copeland, Strategic Mktg & Sales Advisor
- Mike Thorp, Sr. Global Sales Executive
- Kurt Gantrish, Sr. Account Executive

International Consultants
- Katsuya Nishi, Japan and Asia
- Jie Wu, China & Technology Trends
- Michael Feldman, Europe & Strategic Trends

Data Collection
- Cary Sudan, Market Data Group
- Sue Sudan, Market Data Group
- Kirsten Chapman, KC Associates
HPC Market
Results
The 2020 Worldwide On-Prem HPC Server Market: $13.7 Billion (up 1.1%)
WW HPC Market By Segments ($ Millions)

2021 is looking strong for the first half of the year

<table>
<thead>
<tr>
<th>Revenues</th>
<th>2019</th>
<th>2020</th>
<th>1H 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supercomputer</td>
<td>5,118</td>
<td>6,021</td>
<td>2,759</td>
</tr>
<tr>
<td>Divisional</td>
<td>3,164</td>
<td>2,849</td>
<td>1,281</td>
</tr>
<tr>
<td>Departmental</td>
<td>3,193</td>
<td>3,324</td>
<td>1,838</td>
</tr>
<tr>
<td>Workgroup</td>
<td>1,894</td>
<td>1,329</td>
<td>745</td>
</tr>
<tr>
<td>WW Revenue ($M)</td>
<td>13,368</td>
<td>13,523</td>
<td>6,623</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Units Installed</th>
<th>2019</th>
<th>2020</th>
<th>1H 2021</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supercomputer</td>
<td>1,619</td>
<td>1,547</td>
<td>885</td>
</tr>
<tr>
<td>Divisional</td>
<td>8,058</td>
<td>6,664</td>
<td>3,013</td>
</tr>
<tr>
<td>Departmental</td>
<td>18,785</td>
<td>18,526</td>
<td>10,254</td>
</tr>
<tr>
<td>Workgroup</td>
<td>55,529</td>
<td>37,894</td>
<td>22,176</td>
</tr>
<tr>
<td>WW Units</td>
<td>83,991</td>
<td>64,631</td>
<td>36,329</td>
</tr>
</tbody>
</table>
New Supercomputer Subsegments

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Leadership/Exascale-class Systems</td>
<td>0</td>
<td>1,065</td>
<td>1,000</td>
<td>2,150</td>
<td>2,200</td>
<td>2,450</td>
<td>23.2%</td>
</tr>
<tr>
<td>Supercomputers-Large ($3M and up)</td>
<td>3,937</td>
<td>3,670</td>
<td>3,748</td>
<td>3,901</td>
<td>4,380</td>
<td>4,605</td>
<td>5.8%</td>
</tr>
<tr>
<td>Supercomputers-Entry Level ($500k to $3M)</td>
<td>1,287</td>
<td>1,204</td>
<td>1,214</td>
<td>1,347</td>
<td>1,515</td>
<td>1,678</td>
<td>8.6%</td>
</tr>
<tr>
<td>Total Supercomputers ($500K and up)</td>
<td>5,224</td>
<td>5,939</td>
<td>5,962</td>
<td>7,398</td>
<td>8,095</td>
<td>8,733</td>
<td>10.1%</td>
</tr>
</tbody>
</table>

Source: Hyperion Research, June 2021
WW HPC Market By Verticals ($ Millions)

Five segments are over a $ billion a year

<table>
<thead>
<tr>
<th>WW High-Performance Revenues by Applications</th>
<th>2019</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bio-Sciences</td>
<td>$1,421</td>
<td>$1,302</td>
</tr>
<tr>
<td>CAE</td>
<td>$1,674</td>
<td>$1,538</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>$166</td>
<td>$152</td>
</tr>
<tr>
<td>DCC & Distribution</td>
<td>$806</td>
<td>$727</td>
</tr>
<tr>
<td>Economics/Financial</td>
<td>$688</td>
<td>$618</td>
</tr>
<tr>
<td>EDA / IT / ISV</td>
<td>$801</td>
<td>$726</td>
</tr>
<tr>
<td>Geosciences</td>
<td>$938</td>
<td>$858</td>
</tr>
<tr>
<td>Mechanical Design</td>
<td>$051</td>
<td>$048</td>
</tr>
<tr>
<td>Defense</td>
<td>$1,430</td>
<td>$1,332</td>
</tr>
<tr>
<td>Government Lab</td>
<td>$2,368</td>
<td>$3,342</td>
</tr>
<tr>
<td>University/Academic</td>
<td>$2,254</td>
<td>$2,160</td>
</tr>
<tr>
<td>Weather</td>
<td>$622</td>
<td>$572</td>
</tr>
<tr>
<td>Other</td>
<td>$151</td>
<td>$150</td>
</tr>
<tr>
<td>Total Revenue</td>
<td>$13,368</td>
<td>$13,523</td>
</tr>
</tbody>
</table>

Source: Hyperion Research, November 2021
Worldwide HPC Vendor Market Shares

($ Millions)

<table>
<thead>
<tr>
<th>Vendor</th>
<th>Full Year 2020 ($M)</th>
<th>2020 Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPE</td>
<td>4,587</td>
<td>33.4%</td>
</tr>
<tr>
<td>Dell Technologies</td>
<td>2,855</td>
<td>20.8%</td>
</tr>
<tr>
<td>Fujitsu</td>
<td>1,319</td>
<td>9.6%</td>
</tr>
<tr>
<td>Inspur</td>
<td>996</td>
<td>7.2%</td>
</tr>
<tr>
<td>Lenovo</td>
<td>929</td>
<td>6.8%</td>
</tr>
<tr>
<td>Atos</td>
<td>511</td>
<td>3.7%</td>
</tr>
<tr>
<td>Sugon</td>
<td>452</td>
<td>3.3%</td>
</tr>
<tr>
<td>IBM</td>
<td>444</td>
<td>3.2%</td>
</tr>
<tr>
<td>Penguin</td>
<td>200</td>
<td>1.5%</td>
</tr>
<tr>
<td>NEC</td>
<td>192</td>
<td>1.4%</td>
</tr>
<tr>
<td>Others</td>
<td>1,260</td>
<td>9.2%</td>
</tr>
<tr>
<td>Total</td>
<td>13,744</td>
<td>100.0%</td>
</tr>
</tbody>
</table>
The Broader On-premise Market Areas ($ Millions)

The 2020 total on-prem HPC spending exceeded $27 billion (excluding cloud spending)

<table>
<thead>
<tr>
<th>Revenue Area</th>
<th>2019</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server</td>
<td>$13,368</td>
<td>$13,523</td>
</tr>
<tr>
<td>Storage</td>
<td>$5,288</td>
<td>$5,423</td>
</tr>
<tr>
<td>Middleware</td>
<td>$1,572</td>
<td>$1,590</td>
</tr>
<tr>
<td>Applications</td>
<td>$4,569</td>
<td>$4,600</td>
</tr>
<tr>
<td>Service</td>
<td>$2,181</td>
<td>$2,146</td>
</tr>
<tr>
<td>Total Revenue</td>
<td>$26,979</td>
<td>$27,283</td>
</tr>
</tbody>
</table>

Source: Hyperion Research, November 2021
Updated HPC Forecasts
On-Prem HPC Server Forecast
($ Millions)

- The five-year CAGR (2020 to 2025) is 8%
 - Reaching close to $20 billion in 2025

© Hyperion Research 2021
HPC On-Prem Server Forecast ($ Millions)

The overall CAGR is now 8%

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WW HPC Revenues</td>
<td>$13,368</td>
<td>$13,523</td>
<td>$14,550</td>
<td>$16,947</td>
<td>$18,565</td>
<td>$19,947</td>
<td>$19,901</td>
<td>8.0%</td>
</tr>
<tr>
<td>Source: Hyperion Research, November 2021</td>
<td>1.2%</td>
<td>7.6%</td>
<td>16.5%</td>
<td>9.5%</td>
<td>7.4%</td>
<td>-0.2%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Supercomputer</td>
<td>$5,118</td>
<td>$6,021</td>
<td>$6,258</td>
<td>$7,726</td>
<td>$8,653</td>
<td>$9,401</td>
<td>$9,251</td>
<td>9.0%</td>
</tr>
<tr>
<td>Divisional</td>
<td>$3,164</td>
<td>$2,849</td>
<td>$3,091</td>
<td>$3,532</td>
<td>$3,858</td>
<td>$4,156</td>
<td>$4,199</td>
<td>8.1%</td>
</tr>
<tr>
<td>Departmental</td>
<td>$3,193</td>
<td>$3,324</td>
<td>$3,726</td>
<td>$4,234</td>
<td>$4,625</td>
<td>$4,968</td>
<td>$5,078</td>
<td>8.8%</td>
</tr>
<tr>
<td>Workgroup</td>
<td>$1,894</td>
<td>$1,329</td>
<td>$1,475</td>
<td>$1,456</td>
<td>$1,430</td>
<td>$1,422</td>
<td>$1,373</td>
<td>0.7%</td>
</tr>
<tr>
<td>Total</td>
<td>$13,368</td>
<td>$13,523</td>
<td>$14,550</td>
<td>$16,947</td>
<td>$18,565</td>
<td>$19,947</td>
<td>$19,901</td>
<td>8.0%</td>
</tr>
</tbody>
</table>

Source: Hyperion Research, November 2021
On-Prem HPC Processor Forecast ($ Millions)

- The five-year CAGR (2020 to 2025) is 6.8%
 - Exceeding 5.5 million base processors in 2025
GPU/Accelerator Forecast

Anticipated high growth for accelerators over next 5 years
On-Prem Forecasts For The Broader Market Areas ($ Millions)

Storage is expected to grow the most at 9.3% CAGR

<table>
<thead>
<tr>
<th>Revenues by the Broader HPC Market Areas</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
<th>2025</th>
<th>CAGR 20-25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server</td>
<td>$13,523</td>
<td>$14,550</td>
<td>$16,947</td>
<td>$18,565</td>
<td>$19,947</td>
<td>$19,901</td>
<td>8.0%</td>
</tr>
<tr>
<td>Storage</td>
<td>$5,423</td>
<td>$5,931</td>
<td>$6,981</td>
<td>$7,835</td>
<td>$8,479</td>
<td>$8,454</td>
<td>9.3%</td>
</tr>
<tr>
<td>Middleware</td>
<td>$1,590</td>
<td>$1,736</td>
<td>$2,035</td>
<td>$2,244</td>
<td>$2,426</td>
<td>$2,420</td>
<td>8.8%</td>
</tr>
<tr>
<td>Applications</td>
<td>$4,600</td>
<td>$4,913</td>
<td>$5,626</td>
<td>$6,060</td>
<td>$6,396</td>
<td>$6,353</td>
<td>6.7%</td>
</tr>
<tr>
<td>Service</td>
<td>$2,146</td>
<td>$2,254</td>
<td>$2,531</td>
<td>$2,674</td>
<td>$2,767</td>
<td>$2,738</td>
<td>5.0%</td>
</tr>
<tr>
<td>Total Revenue</td>
<td>$27,283</td>
<td>$29,383</td>
<td>$34,121</td>
<td>$37,378</td>
<td>$40,015</td>
<td>$39,867</td>
<td>7.9%</td>
</tr>
</tbody>
</table>

Source: Hyperion Research, November 2021
The Exascale Market (System Acceptances)

Over 30 systems and over $11 billion in value

<table>
<thead>
<tr>
<th>Year Accepted</th>
<th>China</th>
<th>EU, UK, Germany</th>
<th>Japan</th>
<th>US</th>
<th>Other Countries*</th>
<th>Total Systems</th>
<th>Total Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td></td>
<td></td>
<td>1 near-exascale system ~$1B</td>
<td></td>
<td></td>
<td>1</td>
<td>$1B</td>
</tr>
<tr>
<td>2021</td>
<td>1 or 2 near-exascale systems ~$400M each</td>
<td>1 pre-exascale system ~$185M</td>
<td>?</td>
<td>1 pre-exascale system ~$200M</td>
<td>--</td>
<td>3-4</td>
<td>$0.8B - $1.2B</td>
</tr>
<tr>
<td>2022</td>
<td>1 or 2 exascale systems ~$350M - $400M each</td>
<td>2 pre-exascale systems ~$400 total</td>
<td>1 near-exascale system ~$200M</td>
<td>1 exascale systems ~$600 M</td>
<td>--</td>
<td>5-6</td>
<td>$2B - $2.3B</td>
</tr>
<tr>
<td>2023</td>
<td>1 or 2 exascale system ~$350M - $400M each</td>
<td>1 or 2 exascale systems ~$375M</td>
<td>1 near-exascale system ~$200M</td>
<td>2 exascale system ~1.1M</td>
<td>--</td>
<td>5-7</td>
<td>$2B - $2.8B</td>
</tr>
<tr>
<td>2024</td>
<td>1 exascale system ~$350M - $400M each</td>
<td>2 exascale (Germany & UK) ~$350M</td>
<td>?</td>
<td>1 or 2 exascale systems ~$600M each</td>
<td>1 exascale system ~$200M</td>
<td>5-6</td>
<td>$1.9B - $2.5B</td>
</tr>
<tr>
<td>2025</td>
<td>1 exascale systems ~$350M - $400M each</td>
<td>1 or 2 exascale systems ~$375M (each)</td>
<td>1 exascale system ~$200M</td>
<td>1 or 2 exascale systems ~$500M each</td>
<td>1 exascale system ~$200M</td>
<td>5-7</td>
<td>$1.5B - $2.3B</td>
</tr>
<tr>
<td>2026</td>
<td>1 or 2 exascale systems ~$350M - $400M each</td>
<td>1 or 2 exascale systems ~$375M</td>
<td>?</td>
<td>2 exascale systems ~$500M each</td>
<td>1 or 2 exascale systems ~$200M</td>
<td>5-8</td>
<td>$1.9B - $2.8B</td>
</tr>
</tbody>
</table>

Total | **6-10** | **8-10** | **3+** | **7-9** | **3-4** | **28-39** | **$11B - $15B**

* Includes S. Korea, Singapore, Australia, Russia, Canada, India, Israel, Saudi Arabia, etc.

Source: Hyperion Research, May 2021

© Hyperion Research 2021
Some Results From Our End-user Study
4.2 Years Is The Average Life Of An HPC System Today

From our just released end-user MCS study

<table>
<thead>
<tr>
<th></th>
<th>Responses</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than two years</td>
<td>11</td>
<td>8.3%</td>
</tr>
<tr>
<td>Two years</td>
<td>12</td>
<td>9.0%</td>
</tr>
<tr>
<td>Three years</td>
<td>24</td>
<td>18.0%</td>
</tr>
<tr>
<td>Four years</td>
<td>27</td>
<td>20.3%</td>
</tr>
<tr>
<td>Five years</td>
<td>33</td>
<td>24.8%</td>
</tr>
<tr>
<td>Six years</td>
<td>13</td>
<td>9.8%</td>
</tr>
<tr>
<td>Seven years</td>
<td>7</td>
<td>5.3%</td>
</tr>
<tr>
<td>Eight years or more</td>
<td>6</td>
<td>4.5%</td>
</tr>
<tr>
<td>n = 133</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Hyperion Research, 2021
83% Of Sites Have Accelerators Or Co-processors Today

From our just released end-user MCS study

<table>
<thead>
<tr>
<th>How many co-processors or accelerators are in your largest HPC technical server?</th>
<th>Responses</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>23</td>
<td>17.3%</td>
</tr>
<tr>
<td>Less than 32</td>
<td>28</td>
<td>21.1%</td>
</tr>
<tr>
<td>32 to less than 64</td>
<td>18</td>
<td>13.5%</td>
</tr>
<tr>
<td>64 to less than 100</td>
<td>19</td>
<td>14.3%</td>
</tr>
<tr>
<td>100 to less than 500</td>
<td>18</td>
<td>13.5%</td>
</tr>
<tr>
<td>500 to less than 1,000</td>
<td>11</td>
<td>8.3%</td>
</tr>
<tr>
<td>1,000 to less than 5,000</td>
<td>10</td>
<td>7.5%</td>
</tr>
<tr>
<td>5,000 to less than 10,000</td>
<td>4</td>
<td>3.0%</td>
</tr>
<tr>
<td>10,000 or more</td>
<td>2</td>
<td>1.5%</td>
</tr>
</tbody>
</table>

n = 133

Source: Hyperion Research, 2021

© Hyperion Research 2021
Use Of Different AI/ML/DL Approaches

From our just released end-user MCS study

<table>
<thead>
<tr>
<th>Category</th>
<th>Responses</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine learning</td>
<td>99</td>
<td>70.2%</td>
</tr>
<tr>
<td>Deep learning</td>
<td>86</td>
<td>61.0%</td>
</tr>
<tr>
<td>Graph analysis</td>
<td>25</td>
<td>17.7%</td>
</tr>
<tr>
<td>Cognitive computing</td>
<td>24</td>
<td>17.0%</td>
</tr>
<tr>
<td>Semantic analysis</td>
<td>22</td>
<td>15.6%</td>
</tr>
<tr>
<td>Other big data/analytics</td>
<td>41</td>
<td>29.1%</td>
</tr>
<tr>
<td>We don't plan to run applications of these types</td>
<td>9</td>
<td>6.4%</td>
</tr>
</tbody>
</table>

n = 141

Source: Hyperion Research, 2021
Largest Application Runtime

From our just released end-user MCS study

- ~33% of the #1 applications run for over 24 hours

<table>
<thead>
<tr>
<th>Run Time Duration</th>
<th>Responses</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 5 minutes</td>
<td>3</td>
<td>2.1%</td>
</tr>
<tr>
<td>5 minutes to less than 1 hour</td>
<td>11</td>
<td>7.8%</td>
</tr>
<tr>
<td>1 hour to less than 5 hours</td>
<td>20</td>
<td>14.2%</td>
</tr>
<tr>
<td>5 hours to less than 10 hours</td>
<td>16</td>
<td>11.3%</td>
</tr>
<tr>
<td>10 hours to less than 24 hours</td>
<td>27</td>
<td>19.1%</td>
</tr>
<tr>
<td>24 hours to less than 100 hours</td>
<td>28</td>
<td>19.9%</td>
</tr>
<tr>
<td>100 hours to less than 250 hours</td>
<td>15</td>
<td>10.6%</td>
</tr>
<tr>
<td>250 hours to less than 1,000 hours</td>
<td>3</td>
<td>2.1%</td>
</tr>
<tr>
<td>1,000 hours or more</td>
<td>11</td>
<td>7.8%</td>
</tr>
</tbody>
</table>

n = 141

Source: Hyperion Research, 2021
Programming Models Used Today

A large mix of models are used today

15) What parallel programming languages/models do you use?

<table>
<thead>
<tr>
<th>Model</th>
<th>Responses</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>C/C++ (all types)</td>
<td>112</td>
<td>79.4%</td>
</tr>
<tr>
<td>Python</td>
<td>104</td>
<td>73.8%</td>
</tr>
<tr>
<td>CUDA</td>
<td>74</td>
<td>52.5%</td>
</tr>
<tr>
<td>MPI</td>
<td>73</td>
<td>51.8%</td>
</tr>
<tr>
<td>OpenMP</td>
<td>68</td>
<td>48.2%</td>
</tr>
<tr>
<td>Fortran (all types)</td>
<td>67</td>
<td>47.5%</td>
</tr>
<tr>
<td>R</td>
<td>59</td>
<td>41.8%</td>
</tr>
<tr>
<td>MATLAB</td>
<td>55</td>
<td>39.0%</td>
</tr>
<tr>
<td>Java</td>
<td>42</td>
<td>29.8%</td>
</tr>
<tr>
<td>OpenCL</td>
<td>34</td>
<td>24.1%</td>
</tr>
<tr>
<td>Mathematica</td>
<td>26</td>
<td>18.4%</td>
</tr>
<tr>
<td>Pthreads</td>
<td>24</td>
<td>17.0%</td>
</tr>
<tr>
<td>Scala</td>
<td>20</td>
<td>14.2%</td>
</tr>
<tr>
<td>Ruby</td>
<td>18</td>
<td>12.8%</td>
</tr>
<tr>
<td>Julia</td>
<td>15</td>
<td>10.6%</td>
</tr>
<tr>
<td>SHMEM</td>
<td>15</td>
<td>10.6%</td>
</tr>
<tr>
<td>Coarray Fortran</td>
<td>14</td>
<td>9.9%</td>
</tr>
<tr>
<td>PGAS</td>
<td>14</td>
<td>9.9%</td>
</tr>
<tr>
<td>PVM</td>
<td>4</td>
<td>2.8%</td>
</tr>
<tr>
<td>Cilk</td>
<td>3</td>
<td>2.1%</td>
</tr>
<tr>
<td>Other</td>
<td>8</td>
<td>5.7%</td>
</tr>
<tr>
<td>n = 141</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Hyperion Research, 2021
Hyperion Research helps organizations make effective decisions and seize growth opportunities by providing research and recommendations in both high performance computing and emerging technology areas.
Hyperion Research helps organizations make effective decisions and seize growth opportunities by providing research and recommendations in both high performance computing and emerging technology areas.
QUESTIONS?

Questions or comments are welcome.
Please contact us at:
info@hyperionres.com

Please take a minute to do a short survey to help us improve our update briefings
Highlights of Growth of AI and HPDA in HPC

November 2021

www.HyperionResearch.com
www.hpcuserforum.com

Alex Norton
On-Prem HPC Market Segmentation

Server classification based on end-user application

HPC Servers

Data-Intensive

Traditional Data Science
- Monte Carlo Apps
- Optimization Apps
- Pattern Recognition

HPC-Enabled AI
- Model Training
- Surrogate Models
- Graph Analysis

Machine Learning

Deep Learning

Compute-Intensive

- CFD
- Reservoir Modelling

Other AI
- Graph Analysis
- Semantic Analysis

Note: Definitions can be found in the appendix of the slide deck.
The HPC Server Market Segmented

Data-Centric focused servers comprise ~25% today

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute-Centric Server Revenue</td>
<td>$9,771</td>
<td>$10,024</td>
<td>$10,900</td>
<td>$12,547</td>
<td>$13,637</td>
<td>$14,428</td>
<td>$13,719</td>
<td>6.5%</td>
</tr>
<tr>
<td>Data-Centric Server Revenue</td>
<td>$3,598</td>
<td>$3,499</td>
<td>$3,649</td>
<td>$4,400</td>
<td>$4,928</td>
<td>$5,519</td>
<td>$6,182</td>
<td>12.1%</td>
</tr>
<tr>
<td>HPC Server Revenue Forecast</td>
<td>$13,368</td>
<td>$13,523</td>
<td>$14,550</td>
<td>$16,947</td>
<td>$18,565</td>
<td>$19,947</td>
<td>$19,901</td>
<td>8.0%</td>
</tr>
</tbody>
</table>

- Data-centric servers are growing nearly twice as fast as compute-centric servers, due to:
 - A rise in data-intensive simulations
 - Aggressive growth of AI applications
 - The integration of AI techniques in traditional HPC apps
Within the Data-Centric Market

HPC-Enabled AI systems growing to ~50% of data-intensive market by 2025

<table>
<thead>
<tr>
<th>($M)</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
<th>2025</th>
<th>CAGR '20-'25</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPC-Enabled AI (ML, DL & Other) Server Revenue</td>
<td>$918</td>
<td>$1,039</td>
<td>$1,216</td>
<td>$1,618</td>
<td>$2,034</td>
<td>$2,429</td>
<td>$2,905</td>
<td>22.8%</td>
</tr>
<tr>
<td>Traditional Data Science (non-AI HPDA) Focused Server Revenue</td>
<td>$2,680</td>
<td>$2,460</td>
<td>$2,433</td>
<td>$2,782</td>
<td>$2,894</td>
<td>$3,091</td>
<td>$3,276</td>
<td>5.9%</td>
</tr>
<tr>
<td>Total Data-Centric HPC Server Revenue</td>
<td>$3,598</td>
<td>$3,499</td>
<td>$3,649</td>
<td>$4,400</td>
<td>$4,928</td>
<td>$5,519</td>
<td>$6,182</td>
<td>12.1%</td>
</tr>
</tbody>
</table>

- HPC-enabled AI servers today account for less than \(\frac{1}{3} \) of the data-intensive servers
 - That portion is expected to grow to nearly \(\frac{1}{2} \) by 2025
 - AI-focused servers growing more than 3x faster than traditional data science servers

© Hyperion Research 2021
HPC-Enabled AI Market

ML-focused machines the bulk of the AI market today

<table>
<thead>
<tr>
<th>($M)</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
<th>2025</th>
<th>CAGR '20-'25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine Learning</td>
<td>$667</td>
<td>$719</td>
<td>$806</td>
<td>$1,018</td>
<td>$1,213</td>
<td>$1,368</td>
<td>$1,569</td>
<td>16.9%</td>
</tr>
<tr>
<td>Deep Learning</td>
<td>$209</td>
<td>$263</td>
<td>$341</td>
<td>$501</td>
<td>$692</td>
<td>$899</td>
<td>$1,133</td>
<td>33.9%</td>
</tr>
<tr>
<td>Other AI</td>
<td>$42</td>
<td>$57</td>
<td>$70</td>
<td>$98</td>
<td>$129</td>
<td>$162</td>
<td>$204</td>
<td>29.0%</td>
</tr>
<tr>
<td>Total HPC-Enabled AI</td>
<td>$918</td>
<td>$1,039</td>
<td>$1,216</td>
<td>$1,618</td>
<td>$2,034</td>
<td>$2,429</td>
<td>$2,905</td>
<td>22.8%</td>
</tr>
</tbody>
</table>

- Within HPC-enabled AI servers, DL-focused servers growing aggressively
- Machine-learning-focused servers comprise majority of revenue today

© Hyperion Research 2021
Future HPC System Designs

Users are building heterogeneous systems to handle AI & HPDA workloads

- As workloads become more diverse, system designs have shifted:
 - Some sites are building heterogeneous systems
 - Some sites are building out multiple systems to handle different workloads specifically
 - Some sites are looking to the cloud to address specific subsets of their workload portfolio

- Technology options have diversified as well
 - New accelerator options
 - ASICs designed for specific AI applications
 - Various memory, interconnect, and storage products

- Compute resource allocation should be treated as an optimization problem:
 - Find a balance among diverse technology options
 - Optimize for key workloads
Use of Surrogates in HPC

The injection of AI models to support large simulations

• Using deep learning models to approximate simulations and speed up time to solution
 • While these models lack the accuracy of true simulation, they allow researchers to search the solution space and complete large simulations faster
• Surrogate models are a prime example of the convergence of HPC and AI
• Examples of the use of surrogates have emerged in:
 • Earth system modelling
 • Genetics applications
 • Drug design
 • High-energy physics

For more information about surrogates: https://bit.ly/3o0L2uL
Future Research Directions

Topics of interest for the next year of research

- **New Components**
 - Emergent processors and accelerators
 - New memory technologies
 - Interconnect solutions

- **Application considerations**
 - Changes in data privacy and sharing laws
 - Data storage and sharing considerations

- **Continued intersection of AI and HPC**
 - Use of AI methodologies to augment traditional HPC apps
 - Use of large-scale simulations to generate synthetic data
 - Growing adoption of HPC-enabled AI techniques by traditional IT enterprises

- **Ethics of AI**
 - Explainability, transparency, and reproducibility concerns
 - Societal impacts of AI applications
Want to continue the conversation?

info@hyperionres.com
anorton@hyperionres.com
Appendix
Definitions

- **Compute-Centric HPC Application**: HPC applications that focus primarily on being able to scale across multiple processors for the most computation power possible. Examples of compute-centric HPC applications include crash simulation, reservoir modelling, genome sequencing, and many others. This category is usually referred to as HPC Modelling and Simulation workloads.

- **Data-Centric HPC Application**: HPC applications that rely primarily on the use of large data sets and involve high data transfer between nodes during the execution of the application. Examples of data-centric HPC applications include big data, HPDA, AI, ML, DL, and other data-driven simulation workloads. Many data intensive applications require larger memory profiles on the systems they are run on.
Definitions (cont.)

- **High Performance Data Analysis (HPDA):** refers to data-intensive computing that exploits HPC resources. HPDA includes long-standing, data-intensive modelling and simulation (M&S) methods in the HPC industry/application segments, and newer high-performance analytics methods that are used in these segments, as well as by commercial organizations that are adopting HPC for the first time. HPDA may employ either long-standing numerical modelling and simulation methods, newer methods such as for big data and large-scale graph analytics, semantic technologies, and knowledge discovery algorithms, or some combination of long-standing and newer methods.

- **Artificial Intelligence (AI):** a broad, general term for the ability of computers to do things human thinking does, but in different ways. AI includes machine learning, deep learning (a.k.a. cognitive computing) and other methodologies.
Definitions (cont.)

- **HPC-Enabled AI**: a term to highlight the specific AI applications tracked by Hyperion Research and classified in this forecast. Similar to the definition of HPC applications overall, HPC-enabled AI applications are those that are run by scientists, researchers, engineers, etc. Social media-type AI applications, mainly simple image recognition or tagging, are not included in the forecast. Hyperion Research focuses on the cutting edge, scientific or highly computational AI applications.

- **Machine Learning (ML)**: a process where examples are used to train computers to recognize specified patterns, such as human blue eyes or numerical patterns indicating fraud. The computers are unable to learn beyond their training and human oversight is needed in the recognition process.

- **Deep Learning (DL)**: an advanced form of machine learning that often uses digital neural networks to enable a computer to go beyond its training and learn on its own, without explicit programming or human oversight.
A Quick Update on Exascale Systems

November 2021

Bob Sorensen
Near-Term US Exascale Plans

Three systems over two years with budget of ~ $1.8 billion

- **Frontier**: DOE Office of Science: Oak Ridge National Laboratory
 - Currently being installed: >9,000 nodes, ~29MW, >1.5EF
 - Cray Slingshot with AMD EPYC CPU and AMD Radeon Instinct GPUs
 - Delivery in late 2021, full access in 3Q 2022

- **Aurora**: DOE Office of Science, Argonne National Laboratory
 - >9,000 nodes, **60MW**, > 1EF DP sustained
 - Delivery in late 2022, acceptance in 2023 (delayed at least 12 months)
 - Cray Shasta architecture with Intel Xeons and Intel Xe GPU
 - 08/21: Polaris testbed system (44PF DP and 1.5EF AI)
 - Stand up in 2Q2022

- **El Capitan**: DOE NNSA’s LLNL
 - Early access RZNevada (100 of TFs) delivered in 02/2021
 - Full system delivery in late 2022, with full production, late 2023
 - Cray Shasta architecture AMD EPYC processors, next generation Radeon Instinct GPUs
Mid-Size US Exascale Plan

Crossroads on the horizon: LANL

- Procurements by the Alliance for Computing at Extreme Scale (ACES) partnership between Los Alamos National Laboratory and Sandia National Laboratories
- $105 million contract awarded to Hewlett Packard Enterprise (HPE) to deliver Crossroads, a next-generation HPE Cray EX supercomputer to be sited at Los Alamos for 2022 operation
- Crossroads will be among the first to receive a supercomputer equipped with NVIDIA’s Grace CPUs

Source: Gary Grider LANL, DoE, LA-UR-21-22315
Looking ahead started already

Post-Exascale Computing for the National Nuclear Security Administration

As requested in section 3172 of the FY 2021 National Defense Authorization Act, an ad hoc committee of the National Academies of Sciences, Engineering, and Medicine will conduct a consensus study "reviewing the future of computing beyond exascale computing to meet national security needs at the National Nuclear Security Administration." (Exascale refers to a computer that performs near or above 10^{18} floating point operations per second.)

The study will review:
1. NNSA’s computing needs over the next 20 years that exascale computing will not support;
2. Future computing technologies for meeting those needs including quantum computing and other novel hardware, computer architecture, and software;
3. The likely trajectory of promising hardware and software technologies and obstacles to their development and their deployment by NNSA; and
4. The ability of the U.S. industrial base, including personnel and microelectronics capabilities, to meet NNSA’s needs.

<table>
<thead>
<tr>
<th>Dates</th>
<th>Amounts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date Signed (mm/dd/yyyy)</td>
<td>05/28/2021</td>
</tr>
<tr>
<td>Period of Performance Start Date (mm/dd/yyyy)</td>
<td>06/01/2021</td>
</tr>
<tr>
<td>Completion Date (mm/dd/yyyy)</td>
<td>05/31/2023</td>
</tr>
<tr>
<td>Est. Ultimate Completion Date (mm/dd/yyyy)</td>
<td>05/31/2023</td>
</tr>
<tr>
<td>Solicitation Date (mm/dd/yyyy)</td>
<td>04/12/2021</td>
</tr>
<tr>
<td>Action Obligation:</td>
<td>$1,077,278.00</td>
</tr>
<tr>
<td>Base And Exercised Options Value:</td>
<td>$1,077,278.00</td>
</tr>
<tr>
<td>Base and All Options Value (Total Contract Value):</td>
<td>$1,077,278.00</td>
</tr>
<tr>
<td>Fee Paid for Use of IDV:</td>
<td>$0.00</td>
</tr>
</tbody>
</table>
Japan’s Exascale System

Riken’s Fugaku #1: June 2020 - June 2021 Top 500 list

“Applications First” Exascale R&D
Fugaku Target Applications – Priority Research Areas

- Advanced Applications Co-Design Program to Parallel Fugaku R&D
- Select one representative app from 9 priority areas
 - Health & Medicine
 - Environment & Disaster
 - Energy
 - Materials & Manufacturing
 - Basic Sciences
- Up to 100x speedup c.f. K-Computer => achieved!

Source: Riken, 2021
China Exascale Status

Two (and first) exascale systems are already operating, the 3rd is delayed

- **Sunway Pro OceanLight**
 - Completed March 2021, ~1.3 EFlops Rpeak, ~1.05 EFlops Rmax
 - Full Linpack run
 - 35 MW
 - ShenWei post-Alpha CPU
 - Est. 96 cabinets X 1024 SW39010 (390 core) cpus -> 38 million cores
 - National Supercomputing Center in Wuxi

- **NSCC-Tianjin Tianhe-3**
 - Dual-chip FeiTeng ARM and matrix accelerator node
 - Full completion this month
 - Est ~ 1.7 EFlops Rpeak, 1.3 EFlops Rmax
 - No Linpack results currently

- **NSCC-Shenzhen Phase 2 - Sugon 2-Flops at Guangdong Province**
 - Scheduled for 2022—delayed with possible platform change
 - Hygon processors (low confidence), may go AMD Zen4

- **Skipped June Top 500 listing? Maybe again?**
EU HPC Plans

EuroHPC program: confusion in the making

• **Chartered to develop EU-wide HPC development program**
 • 33 participating States + EU
 • Operational duration: November 2018-2026

• **Three sites recently selected for 150-200 Pflops systems**
 • Kajaani Finland, Barcelona Spain, and Bologna Italy
 • Total investment: 650 million Euros
 • 50% EU
 • 50% Consortium

• **Systems are owned by EuroHPC Joint Undertaking**

• **Trouble afoot :**
 • July 2021: EuroHPC JU canceled the public procurement process for the MareNostrum 5 supercomputer
 • The voting result did not achieve the needed majority to reach an agreement to adopt the selected tender
 • Officials expect that it will be reopened in autumn, leading to a selection early in 2022
EU HPC Plans (continued)

Exascale plans going forward

• EU plan calls for acquisition of two exascale systems in the 2021-2024 timeframe
 • At least one to use European technology: specifically using an EPI-developed processor
 • Additional procurements in Germany in 2024, 2025
 • EU may include 2 additional ES systems in 2023-2026

• Post Exascale System around 2027
 • Plans call for integration and deployment of the first hybrid HPC/quantum infrastructure in Europe

<table>
<thead>
<tr>
<th></th>
<th>2019 & 2020</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
<th>2025</th>
<th>2026</th>
<th>2027</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPC Infrastructure</td>
<td>3 pre-exascale + 5 petascale</td>
<td>Several mid-range, pre-exascale and 2 exascale systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantum Infrastructure</td>
<td>Pilot Quantum simulators interfacing with HPC systems (100+ Quantum units)</td>
<td>QComputer/ QSimulators (NISQ) with Basic HPC integration</td>
<td>QComputer/ QSimulators (NISQ) with Full HPC integration - HPC Accelerators</td>
<td>Prototype QComputers fitted with Error Correction and robust Qbits</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Leonardo Flores Añover, Senior Expert
DG CNECT, HPC & Quantum Technology Unit - European Commission 2021
UK EU Plans

UK looking at 2024

• The UK, which will not likely be eligible to fully take part in EuroHPC projects or access calls when Horizon 2020, has plans for a domestic exascale system
 • Exascale project requirements include support for both traditional modeling and simulation as well as AI/Deep Learning
 • System targeted for both scientific community and industrial users

• Exascale rollout schedule
 • Procurement during 2022
 • Assembly and installation 2023
 • Final changes to hosting environment 2023
 • Planned service opening April 2024

• System will be hosted at Advanced Computing Facility of EPCC, formerly the Edinburgh Parallel Computing Centre, a supercomputing centre based at the University of Edinburgh
QUESTIONS?

Questions or comments are welcome. Please contact us at:
info@hyperionres.com
Edge Computing and HPC

November 2021

www.HyperionResearch.com
www.hpcuserforum.com

Steve Conway
sconway@hyperionres.com
What Is Edge Computing? What Is HPC’s Role?

- **LOCAL**: Computing at or near data sources (IoT devices)
 - Computing *inside* edge devices (e.g., vehicles, medical devices, satellites)
 - Computing *attached* to edge devices (e.g., traffic sensors)
 - Computing *close to* edge devices (“fog computing”)

- **LOCAL-DISTANT**: HPC in more-distant clouds or data centers (e.g., citywide traffic control)
 Only small subset of edge data might be sent here for wide-area analysis and control.

The Waggle Project

© Hyperion Research 2021
What Is Edge Computing? What Is HPC’s Role?

- **LOCAL**: Computing at or near data sources (IoT devices)
 - Computing *inside* edge devices (e.g., vehicles, medical devices, satellites)
 - Computing *attached* to edge devices (e.g., traffic sensors)
 - Computing *close to* edge devices (“fog computing”)

- **LOCAL-DISTANT**: HPC in more-distant clouds or data centers (e.g., citywide traffic control)
 - Only small subset of edge data might be sent here for wide-area analysis and control.

The Waggle Project
Supercomputers aren’t new to edge computing. Since the 1960s-1970s:

- Governments have used HPC to monitor telco traffic.
- Governments have used HPC to forecast weather based on data from sounding balloons and ground observations.
- NASA has used HPC to analyze satellite data
Advantages of Edge Computing

- Faster responses to local events (latency)
 - Traffic congestion, lawbreakers, severe storms

- Lower costs (economics)
 - Moving all data to clouds/data centers & storing it there could become prohibitively expensive

- Higher autonomy & reliability
 - Avoid multi-tenancy, multiple network connections

- Greater privacy & security
 - Avoid multi-tenancy, decide rules for local network

- Scalability
 - Easier to add small, inexpensive local units than to increase cloud and data center footprint.

© Hyperion Research 2021
Edge Computing & Cybersecurity

- **Advantages of Edge Computing for Cybersecurity**
 - Large amounts of data are more difficult to steal from many edge locations than from one central server.
 - Large amounts of computing power are more difficult to hijack for nefarious purposes (e.g., cryptocurrency mining).
 - “Small data” processed at the edge is usually less mission-critical than the subset of edge data sent to central servers.
 - Keeping most data at the edge makes central servers less likely to be attacked.

- **Disadvantages of Edge Computing for Cybersecurity**
 - Edge devices may not be designed with cybersecurity in mind.
 - Commercial edge devices typically not tested for resilience to attacks, which is an important consideration of the DoD.
 - Visibility and control of edge locations via the network may be limited.
 - Loopholes and vulnerabilities in the edge security may provide network access to central servers.
 - Edge devices may be physically small enough to steal or manipulate.
THANK YOU!

info@hyperionres.com
sconway@hyperionres.com
HPC Applications Update

November 2021

www.HyperionResearch.com
www.hpcuserforum.com

Melissa Riddle
HPC Applications Market View

Applications form sizeable broader market area

- Applications are 17% of overall broader market view spend
- For every $ spent on servers, an additional 34% is spent on applications

On premises HPC Spend - 2020
Total 2020 HPC Spend: ~ $27.3B

Source: Hyperion Research, 2021

<table>
<thead>
<tr>
<th>Area ($M)</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
<th>2025</th>
<th>CAGR 20-25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server</td>
<td>$13,523</td>
<td>$14,550</td>
<td>$16,947</td>
<td>$18,565</td>
<td>$19,947</td>
<td>$19,901</td>
<td>8.0%</td>
</tr>
<tr>
<td>Add-on Storage</td>
<td>$5,423</td>
<td>$5,931</td>
<td>$6,981</td>
<td>$7,835</td>
<td>$8,479</td>
<td>$8,454</td>
<td>9.3%</td>
</tr>
<tr>
<td>Middleware</td>
<td>$1,590</td>
<td>$1,736</td>
<td>$2,035</td>
<td>$2,244</td>
<td>$2,426</td>
<td>$2,420</td>
<td>8.8%</td>
</tr>
<tr>
<td>Applications</td>
<td>$4,600</td>
<td>$4,913</td>
<td>$5,626</td>
<td>$6,060</td>
<td>$6,396</td>
<td>$6,353</td>
<td>6.7%</td>
</tr>
<tr>
<td>Service</td>
<td>$2,146</td>
<td>$2,254</td>
<td>$2,531</td>
<td>$2,674</td>
<td>$2,767</td>
<td>$2,738</td>
<td>5.0%</td>
</tr>
<tr>
<td>Total Revenue</td>
<td>$27,283</td>
<td>$29,383</td>
<td>$34,121</td>
<td>$37,378</td>
<td>$40,015</td>
<td>$39,867</td>
<td>7.9%</td>
</tr>
</tbody>
</table>

Source: Hyperion Research, 2021

© Hyperion Research 2021
ISV Application Growth

Modest application software budget increases are expected

- On average, users expect application spending to increase 4% in the next year
- About half of MCS respondents (52%) expect application spending to stay flat
- In addition, ISV license revenues expected to increase due to cloud growth
- Most MCS respondents (77%) use ISV software for at least part of their HPC workload
- On average, an HPC workload consists of:
 - 22% ISV software applications
 - 44% in-house applications
 - 34% open-source (free) applications

© Hyperion Research 2021
Motivators for ISV Application Spending Growth

Expanding HPC resources are increasing ISV licenses

- Demand for more differentiated resources (e.g., accelerators or specialized AI processors) is driving up the average number of HPC systems per site
- HPC sites are using the cloud to address expanding workloads
 - Many HPC users value continuity between their on-prem and cloud applications but licenses in the cloud (when available) come with additional premiums
 - Code may need to be refactored to run in the cloud vs. on-prem
- Many HPC users perceive ISV software as producing faster, more accurate results when compared to open-source applications
Study: Top Applications by Vertical

Many applications are critical across multiple verticals

- HPC users were asked to list their top 3 critical applications only
- Large breadth of ISV applications in some verticals
 - Government Lab, Academic/University, Other
- Some verticals esp. favored in-house/open-source
 - DCC & Distribution, Economics/Financial, Weather
- Many ISVs represented across multiple verticals
 - Ansys, FLUENT, GAMESS, Gaussian, Hadoop, LS-DYNA, MATLAB, NAMD, SAP, Spark, VASP
- Many open-source apps also span verticals
 - Gromacs, LAMMPS, OpenFOAM, Quantum ESPRESSO, TensorFlow, WRF
- Programming languages frequently in top 3
 - MATLAB, R, Python
AI and Big Data Applications

Software used to support AI/big data spans many verticals

- In 2021 MCS, HPC users were asked to list their top 2 successful AI/big data applications (if any)
- Several applications cited across multiple verticals
 - Hadoop (CAE, EDA/IT/ISV)
 - MATLAB (Academic, EDA/IT/ISV, CAE)
 - R (Academic, CAE)
 - Python (Bio-Sciences, EDA/IT/ISV)
 - PyTorch (Academic, Government Lab)
 - TensorFlow (Academic, Defense, Government Lab)
- Consistent with top choices for data-intensive middleware (Hadoop) and AI/ML frameworks (PyTorch, TensorFlow), and also ranked as top HPC applications overall
Applications in the Cloud

Applications are a notable barrier to increasing cloud use

- In 2021 MCS, HPC users were asked to list their top 2 successful cloud applications (if any)
- Wide variety of responses, but a couple were commonly cited
 - Abaqus (CAE)
 - Python (Bio-Sciences, EDA/IT/ISV, CAE)
- Interestingly, a large number of sites stated their top cloud application was AI/ML/DL
- Respondents were asked to give their top 3 barriers to expanding HPC cloud use
 - 18% cited 3rd party application costs
 - 13% cited availability of desired applications
 - 8% of respondents ranked an application issue as their #1 top barrier to increasing cloud use
Applications as Decision Criteria

Application performance essential for on-premises purchasing decisions

- Respondents were also asked to give their top 3 barriers to explaining HPC on-premises
 - 16% cited 3rd party application costs
 - 13% cited availability of desired applications

- Application performance is the top selection criterion for HPC server purchase
 - 28% of users consider this #1 most important attribute
 - 45% of users rank in their top 3 criteria
ISV Applications Database

Database recently updated from new survey data

• Hyperion Research maintains ISV application/tool/software database
 • Leaders/major/minor players by vertical
 • Leading ISV vendors
• Recently updated from newest survey data. Ex:
 • VASP added to university and government
 • MATLAB added to university and EDA/IT/ISV
 • Converge added to CAE
Conclusion

Applications continue to be key to HPC decisions

• Application performance, cost, and availability are critical for HPC decisions both on-premises and in the cloud
• Increasing ISV availability and accessibility in the cloud could encourage further cloud growth
• The definition of an HPC application is evolving
 • ISVs, open source, in-house
 • Packaged software, middleware, programming languages
 • AI/ML/DL considered applications in their own right, and changing utilization of ISVs
QUESTIONS?

info@hyperionres.com
mriddle@hyperionres.com

© Hyperion Research 2021
New Trends on Using Cloud for HPC Workloads

November 2021

Alex Norton and Mark Nossokoff

www.HyperionResearch.com
www.hpcuserforum.com
HPC Cloud Forecast

HPC cloud market forecast to surpass $9B 2025

<table>
<thead>
<tr>
<th>($M)</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
<th>2025</th>
<th>CAGR ‘20-'25</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPC Cloud Forecast</td>
<td>$3,910</td>
<td>$4,300</td>
<td>$5,100</td>
<td>$6,300</td>
<td>$7,150</td>
<td>$8,100</td>
<td>$9,300</td>
<td>16.7%</td>
</tr>
<tr>
<td>HPC Broader Market Forecast</td>
<td>$26,979</td>
<td>$27,283</td>
<td>$29,383</td>
<td>$34,121</td>
<td>$37,378</td>
<td>$40,015</td>
<td>$39,867</td>
<td>7.9%</td>
</tr>
</tbody>
</table>

Source: Hyperion Research, 2021
HPC Cloud Vertical Forecast

Bio-sciences and CAE the early adopting verticals; weather, geosciences and academia show highest growth

<table>
<thead>
<tr>
<th>Vertical</th>
<th>2019</th>
<th>2020</th>
<th>2025</th>
<th>2020-2025 CAGR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bio-Sciences</td>
<td>$1,221</td>
<td>$1,297</td>
<td>$2,331</td>
<td>12.4%</td>
</tr>
<tr>
<td>CAE</td>
<td>$733</td>
<td>$795</td>
<td>$1,798</td>
<td>17.7%</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>$98</td>
<td>$108</td>
<td>$223</td>
<td>15.7%</td>
</tr>
<tr>
<td>DCC & Distribution</td>
<td>$222</td>
<td>$244</td>
<td>$549</td>
<td>17.6%</td>
</tr>
<tr>
<td>Economics/Financial</td>
<td>$205</td>
<td>$248</td>
<td>$699</td>
<td>23.0%</td>
</tr>
<tr>
<td>EDA</td>
<td>$285</td>
<td>$316</td>
<td>$723</td>
<td>18.0%</td>
</tr>
<tr>
<td>Geosciences</td>
<td>$240</td>
<td>$269</td>
<td>$622</td>
<td>18.2%</td>
</tr>
<tr>
<td>Mechanical Design</td>
<td>$20</td>
<td>$21</td>
<td>$36</td>
<td>10.8%</td>
</tr>
<tr>
<td>Defense</td>
<td>$296</td>
<td>$330</td>
<td>$753</td>
<td>18.0%</td>
</tr>
<tr>
<td>Government Lab</td>
<td>$274</td>
<td>$304</td>
<td>$594</td>
<td>14.3%</td>
</tr>
<tr>
<td>University/Academic</td>
<td>$196</td>
<td>$215</td>
<td>$360</td>
<td>10.8%</td>
</tr>
<tr>
<td>Weather</td>
<td>$42</td>
<td>$65</td>
<td>$361</td>
<td>41.1%</td>
</tr>
<tr>
<td>Other</td>
<td>$79</td>
<td>$88</td>
<td>$251</td>
<td>23.4%</td>
</tr>
<tr>
<td>Total</td>
<td>$3,910</td>
<td>$4,300</td>
<td>$9,300</td>
<td>16.7%</td>
</tr>
</tbody>
</table>

Source: Hyperion Research, 2021
A Complete HPC Market Picture

Incorporating the cloud to the broader market forecast

Source: Hyperion Research, 2021
Impact of HPC Cloud on On-Premises

Organizations are increasingly factoring cloud into future on-premises deployment plans

- Today, public cloud resources are complementary to many on-premises deployments
 - Many longitudinal studies show that cloud is used primarily for burst capabilities by many HPC users
- A recent study showed that almost 50% of the users are altering on-premises deployments due to cloud
- Migrating HPC workloads to cloud platforms requires new skills for datacenter managers and researchers
 - Much of this education and training on using the cloud addresses which workloads can and should be run in the cloud versus remain on-premises
 - IT departments are factoring in data movement and security as they expand their resource pools to consist of cloud resources

© Hyperion Research 2021
Differing Approaches

“Cloud” deployments showing up in different ways

- **What is the UK Met deal actually like?**
 - Azure hosting multiple Cray machines
 - Working with UK Met on porting code and data
 - Currently in development phase, with compute to arrive around mid-2022

- **Where do offerings like HPE’s Greenlake fit in “hybrid” cloud segment?**
 - Greenlake offers elastic compute capabilities, similar to cloud, but on-premises
 - Some off-prem hosting available
 - Example: HPE to provide NSA with “secure cloud services on-premises…”¹
 - Services like this allows users to keep more “on-premises” rather than in a third-party environment

What is Next for the Cloud?

Cloud computing for HPC workloads is changing the compute landscape

• **Continued rise of cloud-born HPC users**
 - Sites without previous on-premises infrastructure
 - Startups running computationally intensive or data-intensive workloads at scale on cloud
 - Cloud offers elastic capabilities with limited overhead

• **Cloud usage will boil down to an optimization problem among these requirements/restrictions:**
 - Cost
 - Time-to-solution
 - Performance
 - Data locality
 - Expertise
Conclusions

HPC in the cloud continues to evolve, as well as augment the broader HPC market

- HPC users continue to increase their cloud usage and cloud spend, resulting in an aggressive growth.
- Many barriers to increased HPC cloud usage have remained consistent over a few years:
 - CSPs are working to address these barriers.
 - Users should look to educate themselves on current capabilities and improvements CSPs have made.
- Established and emerging HPC user sites should look to balance on-premises and cloud compute resources based on:
 - Budget
 - Time to solution required
 - Skillsets
 - Current resources

© Hyperion Research 2021
Want to continue the conversation?

info@hyperionres.com
anorton@hyperionres.com
mnossokoff@hyperionres.com
Perspectives on HPC Storage and Interconnects

November 2021

www.HyperionResearch.com
www.hpcuserforum.com

Mark Nossokoff
HPC Storage Demand Continues

Data-intensive workloads primary storage growth driver

- Storage historically the highest growth HPC element
- Storage represents ~ 20% of HPC spending and growing
- Slight on-prem decline in 2025
 - Declining exascale spending
 - Cyclical nature of the market
 - Accelerated adoption of cloud

On-premises HPC Spend - 2020
Total 2020 HPC Spend: ~ $27.3B

<table>
<thead>
<tr>
<th>Area</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
<th>2025</th>
<th>CAGR 20-25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Server</td>
<td>$13,523</td>
<td>$14,550</td>
<td>$16,947</td>
<td>$18,565</td>
<td>$19,947</td>
<td>$19,901</td>
<td>8.0%</td>
</tr>
<tr>
<td>Add-on Storage</td>
<td>$5,423</td>
<td>$5,931</td>
<td>$6,981</td>
<td>$7,835</td>
<td>$8,479</td>
<td>$8,454</td>
<td>9.3%</td>
</tr>
<tr>
<td>Middleware</td>
<td>$1,590</td>
<td>$1,736</td>
<td>$2,035</td>
<td>$2,244</td>
<td>$2,426</td>
<td>$2,420</td>
<td>8.8%</td>
</tr>
<tr>
<td>Applications</td>
<td>$4,600</td>
<td>$4,913</td>
<td>$5,626</td>
<td>$6,060</td>
<td>$6,396</td>
<td>$6,353</td>
<td>6.7%</td>
</tr>
<tr>
<td>Service</td>
<td>$2,146</td>
<td>$2,254</td>
<td>$2,531</td>
<td>$2,674</td>
<td>$2,767</td>
<td>$2,738</td>
<td>5.0%</td>
</tr>
<tr>
<td>Total Revenue</td>
<td>$27,283</td>
<td>$29,383</td>
<td>$34,121</td>
<td>$37,378</td>
<td>$40,015</td>
<td>$39,867</td>
<td>7.9%</td>
</tr>
</tbody>
</table>

Source: Hyperion Research, 2021
HPC Cloud Storage Forecast

Cloud storage ‘20-25 CAGR ~1.9x on-prem storage CAGR

- $1.3B of cloud storage spend in 2020
- Storage represented 1/3 of total cloud spend
- Cloud storage CAGR ~ 1.9x on-prem storage CAGR
 - Cloud: 17.3%
 - On-prem: 9.3%
2021 HPC Storage Vendor Preferences

Dell Technologies top preferred on-prem HPC storage vendor

- Dell Technologies first overall; preferred by Industry
- IBM second preferred overall and in all sectors
- HPE/Cray preferred 3rd overall but tops in Government
- DDN 4th overall, preferred in Academia, and preferred independent
- Top others: Seagate, Lenovo, Fujitsu, Huawei, ATOS

© Hyperion Research 2021
Storage Ecosystem Technology
Sharp increase in utilization of emerging file systems
Industry sector leading exploration of “other” file systems

2021 File System Site Preferences

- NFS
- Lustre
- ext4
- Spectrum Scale
- HDFS
- ZFS
- XFS
- Other

n = 141 sites (82, 23, 36, respectively); 252 storage systems
Data represents % of sites utilizing a particular file system
Choice was given to select multiple file systems - %s won’t add to 100
Red Hat replaced as an option with specific list of Red Hat properties

Source: Hyperion Research, 2021

2021 File System Preference by Sector

- NFS
- Lustre
- ext4
- Spectrum Scale
- HDFS
- ZFS
- XFS
- Other

n = 141 sites (82, 23, 36, respectively); 252 storage systems
Data represents % of sites utilizing a particular file system
Choice was given to select multiple file systems - %s won’t add to 100
Red Hat replaced as an option with specific list of Red Hat properties

Source: Hyperion Research, 2021
File System Market Observations

Emerging file systems gaining traction

- Sites average 1.8x file systems
- NFS and Lustre remain top two
 - Both exhibited growth
 - Industry leans towards NFS
 - Government tends towards Lustre
- ext4 rose to third most preferred
- Spectrum Scale dropped to fourth
 - Sharp drop in adoption at government sites
 - Increased adoption within industry
- **Next five (10% - < 20%)**
 - HDFS, ZFS, XFS, BeeGFS, GFS
- **Next tier (2% - < 10%)**
 - CEPH, OneFS, WekaFS, Gluster, PVFS/OrangeFS, DAOS, PanFS
System Interconnect Preferences

InfiniBand edges ahead of Ethernet in aggregate adoption

- Initiated distinction between storage and system interconnects
 - Ethernet
 - Adopted at 44% of sites surveyed
 - 10 Gbit most widely adopted
 - InfiniBand
 - Deployed at 46.1% of sites surveyed
 - EDR 100 Gbit most widely deployed
 - Omni-Path
 - Some adoption across all sectors
 - 2nd largest deployed in academic sites (13.9%)

© Hyperion Research 2021
Storage Interconnect Preferences

Ethernet emerged as preferred storage interconnect

- Initiated distinction between storage and system interconnects
- Sector preference differences
 - Industry leans ethernet
 - Government split between ethernet and InfiniBand
 - Academia leans InfiniBand
- Omni-Path large part of other

--

© Hyperion Research 2021
2H21 Storage Industry Review
2H21 HPC Storage and Interconnect Activity

Broad areas of investment and innovation

- **Pawsey 130PB system refresh**
 - Saving data for longer periods of time
 - More researchers globally accessing the data
 - In addition to Setonix announcement in 1H21

- **IBM Spectrum Fusion**
 - Red Hat bearing fruit
 - Containerized IT for increased adoption of HPC-enabled AI

- **Lustre cloud enhancements**
 - AWS
 - Azure
 - Google Cloud

- **DNA Storage financing**
 - CATALOG
 - Molecular Assemblies
 - DNA Script

- **Interconnect / Networking announcements**
 - Rockport Networks – switchless network
 - Accelerating CXL adoption plans
Future Research Direction
Future Research Direction

Broad range of topics across diverse storage ecosystem

- Grow on-prem census data
 - Use cases
 - Temporal, durable
 - File, block, object
 - Scratch, user, home directory, project, campaign, archive
 - Capacity
 - Internal to servers and compute nodes

- Expand cloud storage coverage
 - Cloud storage landscape model
 - Cloud workload usage and requirements

- Broaden general storage and data management areas
 - Storage consumption models
 - Data and workflow management
 - Migration of HPC workloads to the cloud
 - Impact of edge computing

- Develop broader technology coverage
 - Storage for Containers
 - POSIX compliancy
 - Interconnects
 - Additional memory topics
THANK YOU!

Want to continue the conversation?

info@hyperionres.com
mnossokoff@hyperionres.com
Quantum Computing: Moving Out of the Lab?

November 2021

www.HyperionResearch.com
www.hpcuserforum.com

Bob Sorensen
Currently, the Promise of QC is Substantial

- QC systems have the potential to exceed the performance of conventional computers for problems of importance to humankind and businesses alike in areas such as:
 - Physical Simulation
 - Materials science
 - Chemistry
 - Pharmaceuticals
 - Oil and gas
 - Machine learning
 - Optimization
- And the list grows longer each day
Broad Range of Contenders

• Hardware-wise, several competing quantum modalities under development
 • Superconducting
 • Photonic
 • Trapped Ions
 • Spin/Quantum Dot
 • Cold/Neutral/Helium Atom
 • NV/Diamond/NMR
 • Adiabatic
 • Topological

• Each offers their own unique strengths and weaknesses
 • There may not be a clear winner
 • And the ultimate winner may not be here

© Hyperion Research 2021

Source: Michel Kurek https://www.linkedin.com/in/michellkurek/
Substantial Challenges Ahead

In almost every dimension

- **Materials research**
 - Coherency, defect management, power

- **Device and processor development**
 - Gate/logic designs
 - Coherency, entanglement, control, measurement, error rates and error correction schemes

- **Architecture: memory, interconnect, storage**
 - Heterogeneity ahead
 - No cloning theorem, no broadcast theorem
 - Integration and control
 - Error correcting / Error tolerant designs
 - Designs absent applications
Substantial Challenges Ahead (cont.)

In almost every dimension

- **Software**
 - QC assembly, instruction sets, programming language and tools
 - QC interfaces to classical systems
 - Validation and verification

- **Algorithms**
 - A wide-open field

- **Despite these challenges, the lure of potential performance is driving a growing perspective within both the supplier and (potential) user base that the technology may soon be coming of age**
 - The shift from research topic to market phenomena is a growing reality
QC Supplier Roadmaps Emerging

Designed to build confidence, highlight long-term commitment

Source: IBM, Honeywell, IonQ, Rigetti: 2021
Growing Interest as An Investable Technology Sector...

Global VC deals in quantum computing

Source: Pitchbook: Data as of Sept. 8, 2021

<table>
<thead>
<tr>
<th>Company</th>
<th>Deal Date</th>
<th>Deal Size (millions)</th>
<th>Post-money Valuation (millions)</th>
<th>Select Investors</th>
<th>Company HQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>PsiQuantum</td>
<td>7/27/2021</td>
<td>$450.0</td>
<td>$3,150.0</td>
<td>Baillie Gifford, BlackRock, M12, Temasek</td>
<td>Palo Alto</td>
</tr>
<tr>
<td>Xanadu</td>
<td>5/25/2021</td>
<td>$100.0</td>
<td>N/A</td>
<td>Bessemer Venture Partners, Georgian, Tiger Global</td>
<td>Toronto</td>
</tr>
<tr>
<td>Rigetti</td>
<td>8/4/2020</td>
<td>$79.0</td>
<td>N/A</td>
<td>Andreessen Horowitz, Battery Ventures, Bessemer Venture Partners, DCVC</td>
<td>Berkeley, Calif.</td>
</tr>
<tr>
<td>IonQ</td>
<td>6/16/2020</td>
<td>$62.0</td>
<td>$192.0</td>
<td>Airbus Ventures, Amazon Web Services, Mubadala</td>
<td>College Park, Md.</td>
</tr>
<tr>
<td>Quantum Machines</td>
<td>9/6/2021</td>
<td>$50.0</td>
<td>N/A</td>
<td>Battery Ventures, Red Dot Capital Partners, Samsung NEXT Ventures, Valor Equity Partners</td>
<td>Tel Aviv</td>
</tr>
</tbody>
</table>

Source: Pitchbook: Data as of Sept. 8, 2021
...and as a Mainstream Investment Opportunity

- **March 2021:** IonQ, first publicly traded full-stack QC company
 - Merger agreement with dMY Technology Group III, $650 million in gross proceeds
 - Pro forma implied market capitalization of the combined company is approximately $2 billion

- **July 2021:** Quantum Computing Inc. listed on Nasdaq
 - QCI becomes one of a handful of first pure-play quantum software company to list there

- **October 2021:** Rigetti plans to go public via a Special Purpose Acquisition Company (SPAC) merger
 - The combined company is expected to receive approximately $458 million in gross cash proceeds
 - Plans to merge with Supernova Partners Acquisition Company II, Ltd. would value Rigetti at around $1.5 billion
Perhaps More Important, Users are Also Taking an Interest...

- **September 22, 2021**: Widespread interest in quantum computing across industry sectors
 - Majority of U.S. professionals (89.8%) believe that IT departments should have budgets dedicated to quantum computing
 - 61.9% already have budgets for quantum computing, and an additional fifth (21.6%) plan to incorporate quantum computing into their IT planning
 - Source: Classiq, quantum algorithm design platform provider, 2021

- **October 10, 2021**
 - Hyperion Research study for D-Wave: What is the current state of quantum computing activity in your organization?
 - Exploring options and monitoring technology development: 47%
 - Quantum use case analysis and prioritization are being used: 35%
 - Proof of concept research programs underway: 33%
 - Fully funded research efforts are being used: 27%
 - Limited in-house pilot programs underway: 23%
 - Production use of quantum computing for one or more business processes: 22%
 - No current activity but planning to start up activity within the next few years: 21%
 - No activity and no plans to have any activity in the next few years: 8%
 - Don’t know/Not sure: 2%

© Hyperion Research 2021
So How Does This Play Out?

- Interest in quantum computing technology and its potential to help accelerate advanced computing workloads is growing, from both supply and demand perspectives.

- For suppliers, it’s going to be less about the technology and more about the end-use and end-users.
 - An early lead in a hardware or software capability could help ensure long-term success, but performance claims need to be realistic, and expectations need to be managed for both potential clients and investors.
So How Does This Play Out? (cont.)

• For users, it’s about accelerated or new performance that they can readily integrate into existing and planned IT workloads
 • Enabling innovation, driving research, and realizing competitive advantage are the performance indicators that increasingly will carry the day

• Is the current enthusiasm with QC investment a good news or bad news story?
 • A show of hands, please
QUESTIONS?

Questions or comments are welcome.
Please contact us at: info@hyperionres.com
HPC Market Update
During SC21
November 2021

www.HyperionResearch.com
www.hpcuserforum.com

Earl Joseph
In Summary
Conclusions

• The pandemic was expected to impact 2020 by ~8% decline, but Fugaku made 2020 a growth year!
 • 2021 is looking strong
 • 2022 to 2024 are expected to be strong growth years
 • Exascale systems will drive growth in 2022 to 2024
 • AI, HPDA, big data are hot growth areas
 • HPC in the cloud will lift the sector writ large

• New technologies are showing up in larger numbers:
 • Processors, AI hardware & software, memories, etc.

• The cloud has become a viable option for many HPC workloads

• Storage will likely see major growth driven by AI, big data and the need for much larger data sets
The ROI From HPC Is High

The average ROI is $507 for revenue, and on average $47 for profits/cost savings

Updated results continue to indicate substantial returns for investments in HPC:

- The data now covers 763 successful HPC projects
- On average $507 dollars in revenue per dollar of HPC invested was generated (excluding outliers)
- On average $47 dollars of profit (or cost savings) per dollar of HPC invested was generated (excluding outliers)
- The average HPC investment per innovation was $2.6 million

Note that this research is looking at the economic impacts based on the HPC investment compared with the output of revenue/sales and/or profits and cost savings. It excludes the additional costs of production, sales etc. that are also required for each project.

The full data and results of this research are available at: www.hpcuserforum.com/ROI/
Hyperion Research helps organizations make effective decisions and seize growth opportunities by providing research and recommendations in both high performance computing and emerging technology areas.
Thank You For Joining Us Today!
QUESTIONS?

Questions or comments are welcome. Please contact us at: info@hyperionres.com

Please take a minute to do a short survey to help us improve our update briefings