
MLCommons Adds Edge/Embedded AI Inference Benchmark
$1,500.00
Authors: Alex Norton and Bob Sorensen
Publication Date: 6 202021
Length: 1 pages
MLCommons, an international artificial intelligence (AI) standards body formed in 2018, launched MLPerf Tiny, their first benchmark targeted at the inference capabilities of edge and embedded devices, or what they call “intelligence in everyday devices”. The new benchmark is now part of the overall MLPerf benchmark suite, which measures AI training and inference performance on a wide variety of workloads, including natural language processing and image recognition. The benchmark covers four machine learning (ML) tasks focused on camera and microphone sensors as inputs: keyword spotting, visual wake words, tiny image classification, and anomaly detection. Some important use cases include smart home security, virtual assistants, and predictive maintenance.
Related Products
- The initial model was trained on pancreas treatment plans, then retuned and applied to a smaller set of data points on adrenal cancers. The output of the model generates a fluence map for specific IMRT beam-based treatments for adrenal cancers.
- According to the researchers, this approach is meant to supplement but not replace human expertise in the field and is reliant on human expertise to finetune and improve the AI model.
Deep Transfer Learning Framework Applied to Radiation Therapy
Alex Norton, Tom Sorensen
At the conclusion of 2021, researchers at UNC Charlotte and Duke University Medical Center published results of work done to use transfer learning methods to generate fluence maps for radiation therapy, aimed at providing medical professionals with more capability and information in fighting adrenal cancers. The technique uses a deep transfer learning model trained on a much larger dataset that can be applied to a smaller data set for a specific application.
2 202022 | HYP_Link
New Error Correction Scheme Seeks to Advance Quantum Computing Capabilities
Bob Sorensen, Tom Sorensen
Researchers at the US-based Lawrence Berkeley National Lab (LBNL) recently reported a new approach to error mitigation in a quantum computer (QC) that targets error-producing noise, a ubiquitous problem that can severely limit the performance and utility of existing and near-future quantum computers. The method developed at LBNL consists of taking an initial noisy target circuit and constructing an analogous estimation circuit that is configured specifically for accurate noise characterization. The information gathered from running the estimation circuit is then applied to correct the noise in the original target circuit.
3 202022 | HYP_Link